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A generalized Fokker-Planck equation for the K i g  mode1 
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Abstract. The Fokker-Planck equation is constructed in the space of two variables: s, the 
long-range order and 4, the nearest neighbour conelation function, in the quasi-chemical 
approximation. This generalizes the equation in the Brag-Williams approximation earlier 
presented by two of the authors in which the only variable was s. The master equation is 
taken as the starting point and expressions are obtained for the transition probabilities. 'Ihe 
equations of motion for the mean values of s and 4 are derived; they behave satisfactorily in 
an asymptotic manner and yield the thermodynamic values. The time-dependent fluctua- 
tions are not given by the approximations used; the fluctuations in equilibrium are derived 
from the bivariate normal distribution representing the equilibrium state. 

1. Introd~ctio~ and definitions 

The Fokker-Planck equation for the Ising model in the Bragg-Williams approximation 
has recently been analysed in some detail by Bolton and Leng (1973, 1975) and its 
relation to the Liouville equation established by Goldstein and Scully (1973) and Wang 
(1973). In the present paper we discuss the Fokker-Planck equation in the Bethe- 
Peierls or quasi-chemical approximation. This introduces a generalization into the 
problem which is interesting in its own right and whi& suggests the structure of the 
equation for higher approximations. Meijer and Edwards (1969) discussed a master 
equation in the Bethe-Peierls approximation and showed that the critical slowing down 
in this approximation is essentially the same as in the Bragg-Williams approximation or 
molecular field approximation (Suzuki and Kubo 1968). Indeed we should not expect 
to get new results about the relaxation fram these low-order approximations but the 
interest in their study is to examine the relationship between the time-dependent and 
the thermodynamic solutions. 

In the Bragg-Williams (BW) and mean field approximation (MFA) we have only one 
function in the description of the problem, the long-range order s, which we define by 
3 =(si) where si = kl ,  i = 1 . . . N ;  to proceed to the higher quasi-chemical approxha- 
tion, it was found convenient in another problem (Bolton et a1 1972) to introduce the 
nearest-neighbour correlation function defined by 4 = (sisi). We now expect the 
Fokker-Planck differential equation to be defined by the time-dependence in an {s, 41 
space. We are concerned here with the structure of this differential equation. 

In the quasi-chemical approximation, the exact Ising Hamiltonian 
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becomes 

E(s, 4)  = - ~ N z J ~  - ~ H J V S  (1.2) 
where z is the coordination number of the lattice. We define in the usual way (Domb 
1960) NI as the number of + spins, NZ as the number of down spins, Nl,, NZ2 and N,, as 
the numbers of (++), (- -) and (+ -) nearest-neighbour bonds respectively; then we 
have 

4 = (Nl 1 + N22 - N12)/3zN (1.3) 
and in terms of s and 9, we have 

To find the degeneracy n(s, 9) we treat all types of nearest-neighbour pairs (or bonds) 
as independent; we include (+ -) and (- +) pairs where it is assumed that there are $N12 
of each. Then 

a s ,  4) = MZN)!/(Nl 1 ~ ~ ~ 3 ~ 1 2 ~ ~ ~ 3 ~ ~ 2 ~ ~ ~ ~ 2 2 ~ ~ .  (1.7) 

The normalization factor X is determined by the condition 

c a(s, 4)  = a(s) = N!/NI!N,! + 
which gives 

This expression is simplified by replacing the summation by the largest term. BY 
differentiating with respect to 4 it can be shown that the MFA value C$ = s2 maximizes 
the value of X. The notation A$ is used to represent N j  with 4 = s2 so that the 
degeneracy is given by 

Q(s, 41 = (N!/N1 !N2 !)[(NI) ! ($IQ ! ($N,) !(IQ !I/[ ( N ,  1 )!(+NI 2) ! ($Nu) !(N22) !I. ( 1 -9) 

2. Transition probabilities 

We introduce the function P(s, 4 ;  t )  ds d 4  which represents the probability that the 
system has instantaneous values in the ranges s to s +ds and 4 to 4 +d4. We consider 
only single-spin reversalS. The consequent change in s is kt6 and in 4, the change is &A 
We write the master equation for the system as 
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The superscripts + and - represent the respective increase and decrease of both the s 
and 4 values which result from a spin flipping from down to up (+) and vice versa (-). 
We define W*(s, 4) as the transition probabilities for the single spin flips which changes 
to s f S and 4 to 4 f A. Correspondingly W'(s - 6,4 -A) is the transition probability 
for the single spin flip which changes s - S to s and 4 -A to 4, and W-(s + S,4 +A) is 
the transition probability for the single spin flip which changes s + S to s and 4 + A t 0  4. 
As in Bolton and Leng, 6 = 2 / N  and we offer the following way of calculating A 
approximately. We consider a Bethe-Peierls cluster of agiven spin and its L neighbours 
which are recognized as 'edge' spins of the cluster. The probability of an edge spin 
having the value +1 or -1 may be taken approximately to be the global values N l / N  or 
N2/N. If the central spin is down initially, the contribution to NI, from this cluster is 
zNl /N,  Thus the contribution to N12 of a reversal of the central spin from down to up is 

AN12 = z (Nz - N i ) / N  = -2s. 

Using equation (1.6) we have 

A = - ~ A N ~ ~ / z N =  4s/N (2.2) 
so that on this approximation the changes in s and (6 are related. We note that this value 
of A would be the dominant term if we chose 4 = s2, which is the MFA value. 

If we consider equilibrium then we can use detailed balance in the form 

P ~ ( s ,  (6) W'(S, 4) = PO(S + S ,  4 + A )  W - ( S  +6, (6 +A) (2.3) 
and if we can estimate expressions for Wf and W- from the above equation then we 
can assume that when not in equilibrium, W' and W- have the same structure. The 
probability Po in equation (2.3) is the equilibrium probability given by 

Po(s, 4) = exp[-PFb, 411 

F(s, 4) = E(s, 4)  - kT In ab, (6) 

(2.4) 

(2.5) 
where F(s, 4) represents the Helmholtz free energy. Since we define F by 

Substituting this into the detailed balance condition, and putting Ho= 0, we obtain 

where a = pzJ. On substituting for the degeneracy from equation (1.91, the factorials 
which are a function of s only simplify due to the relations 

N1(S*:S)=N1(s)*l, and N ~ ( s  f 6) = N ~ ( s )  T 1. 

However, with the present choice of A, the quantities Nll, N22 and N I 2  are not integers 
in general and the changes in these quantities given by zN,/N, -zNz/h' and -2s 
respectively do not have integer values. Simplification of the factorials in equation (2.7) 
by cancellation is not possible and to make progress we use Stirling's approximation in 
its lowest order, In N !  = N In N -  N if N is large, with an error O(K1). The width of 
Our probability function is expected to be O(hr1'2> and if we calculate the second 
moment this will be O(N-'). We should not expect therefore to be able to calculate the 
second moment satisfactorily by our equations. 
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The logarithm of both sides of equation (2.7) was taken and Stirling's fonnda 
applied. After straightforward but long algebra, we get the following ratio of the 
transition probabilities : 

W-(s+S,#+A) 
W'b, #) 

- - 
1 +2(s +a)+ 4 + A  

' 
(1 - 2(s + S) + # + A  

r 1 - (4 + A)12 

xexp[2(as +PHom)]. (2.8) 

At a similar point in the Bragg-Williams calculation, Bolton and Leng (1973) made 
choices of W+ and W- which, apart from unimportant multiplicative factors, allowed 
progress to be made describing equilibrium correctly and adequately defining the 
approach to equilibrium. There seems to be little hope of similar choices from equation 
(2.8). The only route forward from this equation seemed to be by the simplification 
6 = A = 0. By rearrangement the expression reduces to 

W+(S, 4)  N2(s)(l+s)'[(l -+)/(l +2s+4J)14z(1+s) expfas + PHom) 
w-c~, ~ ) = N ~ ( ~ ) ( I - ~ ) ~ C ( I  -+)/(I - 2 s ~ 4 ) 1 ~ ~ ( ~ - ~ )  exp[-(us+~~om)l* 

a referee, is to use the asymptotic expansion 

(2.9) 

An alternative and simpler way of deriving equation (2.9), which was pointed out by 

T(X + a)/ryx + b )  = X(a-b)(i + o(~-')) asx+co 

(Abramowitz and Stegun 1965, chap 6, p 257). It can readily be proved that equation 
(2.9) is the leading term in the asymptotic expansion of equation (2.7). 

We choose the transition probabilities 
w+(s, ~ ) = + N ( I  -s)(l+s)z[(l-~)/(1+2s++)11z'1+s'exp(as+~~om) (2.10) 

W-(s, 4) = $lV(l+ s)(l - s)"[(l - 4)/(1-2s + 4)]4z(1-s) exp[-(as +PHom)]. @I1) 

There was little to guide our choice beyond a feeling for symmetry and a sense of the 
propriety of the functions needed to yield the equilibrium values. We note in Passing 
that 

which can be compared with the similar result from the Bragg-Williams approximation 
of Bolton and Leng (1973), namely, 

(2.13) 

W s ,  Ho, 4)  = W+(-s, -Ho, 4)  (2.12) 

W ( S ,  Ho) = W'(-s, -Ho). 
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3. The generalized Fokker-Plan& equation 

We can now obtain the Fokker-Planck equation. We need to define A(s, 4) and 
B(s, 4) through 

Ab, 9)= W+(S, 4)+ W-b, 4) (3.1) 

m, 4)= W+(S, 4)- W-b, 9)  (3.2) 

and we expand P(s f S,4 *A; t )  and w‘(s f 8, 4 *A) about (s, 4). Substituting these 
expansions in the quasi-chemical master equation we get 

(3.3) 
In a way similar to that given in Bolton and Leng we can examine the’order of 
magnitude of the terms in equation (3.3) by considering expansions about s = U and 
4 = 77, the two values at the centre of the P&, 4) distribution. Retaining only those 
terms needed to give correctly the first and second moments of the P(s, 4; f )  we get 

which is the generalized Fokker-Planck equation sought. As in other such equations 
the first-order terms essentially describe the ‘drift’ or the time-evolution of the first 
moments and the second-order terms essentially describe the ‘diffusion’ or the time- 
evolution of the second moments. 

We can now obtain the coupled time-dependent equations for the first moments 
(S(0),(4(0) defined by 

The boundary conditions needed are as follows: 

(3.6) 

we put H, = 0, and use only the first-order terms of equation (3.4). Performing the 
double integrations in equations ( 3 3 ,  integrating by parts and using the boundary 
conditions we get 

(3.7) 
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and 
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(3.8) 

Our probability functions are always sharply peaked about their average or most 
probable value, so that, defining 

so(0 = M t ) >  and 400) = (Q(t)> 
we can replace equation (3.7) by 

7 aso = c= . (1 +so)(l- so){(l +so)'-" -4o)/( l+ 2so+ 40)l t z ( l+sJ  
at 

xexp(wJ-(l -~0)~-~[(1-40)/0 exp(-aso)}. (3.9) 
Defining C(so, 4,,) as the right hand side of equation ( 3 9 ,  then 

(3.10) 

It is straightforward to check that either equation (3.7) or equation (3.8) yields the 

so(o3) = ff 40(@ = .rl (3.11) 

correct equilibrium condition. We define 

and when d/at = 0, we have 

(a, 77) = 0 
whose terms can be rearranged to give 

The thermodynamic route to the equilibrium condition is through the minimization of 
the free energy F(s, 4) with respect to s and 4. The minimum occurs at s = (T and 4 = 9 
and the two coupled equations are given by Lee (1971) and Bolton et al(1972) after 
zeroing all terms referring to the spin-phonon coupling; the two equations are 

(3.14) 

Combining equations (3.13) and (3.14) gives agreement with equation (3.12). 
From what has been said earlier about the approximations made in the s t r u m e  Of 

the transition probabilities, it should not be surprising to learn that no information Is 
given from the present Fokker-Planck equation (3.4) about the second moments of the 
probability function. A higher approximation would .be needed for the transition 
probabilities before the second moments could be given adequately; the algebra, 
already lengthy in the present approximation could be prohibitive. 
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4. Equilibrium fluctaations 

Although we cannot get the time-dependence of the second moments from the present 
Fokker-Planck equation we can readily get them in the equilibrium state, defined by 
equation (2.4). We rewrite this in terms of small deviations from the equilibrium 
average values (T and q as a bivariate normal distribution: 

where D is the normalization constant and Mz' is the covariance of the distribution 
(Feller 1968). Expanding equation (2.4) to second order, we make the identifications 

(4.4) 
The behaviour of these quantities can readily be given in terms of the equilibrium 
relationships (3.13) and (3.14) between (+and 7. The critical temperature T, is defined 
by 

J/kT, =$ In Z/(Z - 2). 

For T> T,, we have (T = 0 and q = tanh PJ. At T,, we have 

77, = l/(z - 1) 
and Mz diverges as T approaches T,. 

since the specific heat Cv is defined by 
In zero magnetic field, expression (1.2) shows that energy E is proportional to and 

Cv = Mf/kT' 

we see that Cv CC M f ,  which remains finite at T = T,. We see from equation (4.4) that 
the covariance M;+ is zero for T >  T,. It diverges as T+ TL. 

5. Conclusion 

we have shown that we can extend the Fokker-Planck equation in the single dimension 
s for the Ising model in lowest approximation to a generalized equation in the two 
dimensions (s, 4). Two approximations had to be made; firstly, we had to put both S 
and A equal to zero in analysing the ratio of the transition probabilities in the equation 
and secondly we had to use Stirling's approximation. Neither are likely to give trouble if 
we are only concerned with the time-dependence of the mean values of s and 4 and 
indeed, our equilibrium condition is exactly that given by thermodynamics. If however 
we wanted to examine the fluctuations in the time-dependent equations, the two 
approximations that we have used are not adequate. We know what the fluctuations are 
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like in equilibrium in this Bethe-Peierls approach to the Ising model; from our 
experience it seems that the algebra of a ~ u c ~ e ~ ~ f u l  Fokker-Planck equation could 
very heavy. 
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